BG/L System Overview

Susan Coghlan

MCS BG/L Specs

Core Rack:

— 1024 dual-cpu 440 700Mhz 512MB RAM compute
nodes

— 32 1/0 nodes (1/32 computes, basically the same
as compute nodes),

— Torus, Global Tree, Global Interrupt networks
Frontends:

— JS20 blades — PPC970 2.1GHz dual-cpu 4GB
RAM

Service Node:
— 4-way 1.7 Ghz PPC (2 CPU cores), 16GB RAM
20 Storage servers (4 homedir, 16 PVFS) ~14TB

Core Rack Layout

2 Midplanes per rack (top and bottom)
16 Node Boards per Midplane

16 Compute Cards per Node Board

2 Chips per Compute Card

2 Processors per Chip

1 1/O assigned to each set of 32
Compute Nodes

Layout of BGL

Login servers — SuSE Linux OS (SLES9), regular
user logins, compiles and job submissions

Service node — SuSE Linux OS (SLES8), no regular
user logins, job manager, partitioning of cluster, boots
I/O nodes

I/0 nodes - embedded Linux, no logins yet, function
is to forward 1/0O between compute nodes and storage
nodes

Storage/home nodes — SUSE Linux OS (SLES9),
filesystems servers, no regular users logins, provides
filesystems for job access, home dirs on login servers
Compute nodes — IBM microkernel, no shell, no
dynamic library loading, no local filesystems

BGIL Core Rack

MCS BG/L
Configuration

rm4
.
[«
= «
3 b
o <
=
=
=
|
=
|
=
-

Slorage Rack

Accessing BGL

Request BGL resource from MCS account pages
https://accounts.mcs.anl.gov

Welcome mail with information on how to log on,
running a simple job, etc. will be sent to you

SSH keys might already be set up for you, if not,
send your public key to support@bgl.mcs.anl.gov
SSH into bgl.mcs.anl.gov from an ANL machine,
otherwise, ssh into MCS conduit machine (terra) —
forwarding your ssh keys through to BGL

Job Run Basics

* Overview:
— Partitions are allocated (or booted)
+ Partition is set for a specific user

* /0 nodes associated with partition boot
with specified ramdisk and kernel

* 1/O nodes NFS mount /bgl, home and
eventually PVFS directories

— User job(s) is (are) run
— Partition is freed
« Compute Node run modes:

— Co-Processor (default) - 1 proc computes, 1
handles communication

— Virtual — both procs are used for computing

Partitions explained

+ Partitions consist of /0 node(s) and compute nodes

+ 3 standard partitions: full (1024), midplane0 (512),
midplane1 (512)

+ Special 32 node partitions: Pgeneral for any user's use,
dedicated P<username> for specific users. Ask if you
need a dedicated partition

* 2 modes of using partitions:
— Pre-allocated
— Allocated on the fly
+ Allocating a partition takes around 3 minutes

+ Multiple jobs (by the same user) can be run within a pre-
allocated partition

mpirun

Example mpirun command:

mpirun -partition Psmc -np 32 -cwd “pwd" -exe “pwd /hello.rts
To run jobs on a specific partition use mpirun -partition
<partition> (always specify a partition)
-np <#procs> can be <= partitionsize for C mode, <=
2*partitionsize for V mode (partition must be set to V mode
default to use V mode)
mpirun always used to run jobs — whether they are mpi based or
not
A job already running in a partition gives a reasonable error. It
causes no damage to try to run.

Scheduling Jobs

No job scheduler at this time. Narayan Desai is
writing one. We hope to have a version available
next week.

Reservations are needed for anything larger than a
32 node partition.

Reservations are handled by notifying the users and
asking them not to run jobs during a specific time
period.

We are working on tools to list jobs, kill jobs, etc.

If you have a hung job that you can't kill, contact
support.

Help

Documentation on the web site: http://www.bgl.mcs.anl.gov

Mailing list archives — discuss, notify:
http://www.bgl.mcs.anl.gov/MailLists

Email to discuss@bgl.mcs.anl.gov for user community support

Email to support@bgl.mcs.anl.gov for system support

Web problem tracking report (not yet available)
http://www.bgl.mcs.anl.gov/support

Parallel Issues on BG/L

Katherine M Riley

| IBM Research

NAS

NAS Parallel Benchmark class C on 25/32 and 64 processors

W coprocessor
[virtual

0.4
0.3

Running time relative to coprocessor mode

o 9o
= N

o

BT CG EP FT IS LU MG SP
Benchmarks

25 Blue Gene/L © 2004 I1BM Corporation

LINPACK performance as a function of machine size
100 T

—«— Single processor
a0} —e— Virtual node mode |
—a— Coprocessor mode

60|

50 .

% of peak

o 1

10}]

0 " ¥
10 10 10 10
Number of compute nodes

The Networks

3D Torus

— Point-to-Point, Point-to-Some

Global Tree

— Global Operations, 8 microseconds latency
Global Barriers and Interrupts

— Low latency barriers and interrupts (over a tree)
G-bit Ethernet

— File I/0 and Host interface

Control Network

— Boot, Monitoring and Diagnostics

Torus

Each node has 6 nearest neighbor
interconnects

Raw hardware bandwidth:
— 2bits/cycle -> 175MB/s @ 700 MHz
— 6 microseconds

Adaptive routing
Maximum packet size of 256 bytes
Turn it off :

— “mpirun -connect MESH’

Noise

Very little on the system

— Tiny kernel doing very little
* Results in limited node functionality

Necessary for coordinating
communication

— It really works
Very reproducable results
Can use almost the entire 512MB

Using the Second CPU

« Communication Coprocessor Mode

— “‘mpirun -mode CO”

* Virtual Node Mode

— “‘mpirun -mode VN’
— Two MPI processes per node (1 per proc)
« Communication through L3 cache

— Issues
* Share the 512 MB
* No communication offload

Massive Communication +
Comp-

1000

== BGL Dec-04

—#— BGL Sept-04
BGL Sept-04
Jazz

=3é=MCR 1 Proc
Qsc

=== Seaborg

(s)

Log10 Total Time

Controlling MPI

« Setting parameter like eager
—-env BGLMPI_EAGER=1000

« Control networks for individual
commands

— BGLMPI_ALLREDUCE=MPICH,TREE,
TORUS

+ Available for all global operations
— BGLMPI_BARRIER

10

Message Passing for
Applications

« Communicators

— Tree interconnect utilized only for
MPI_Comm_world operations

— Torus interconnect supports multicast
operations on any axis
» Special topology-aware algorithm to fill plane

« Map MPI apps to machine topology

Create Physical Node
Partition

» User specified shape of partition when
submitting job
—mpirun -shape NxNxN

« Contiguous rectangular partition

» Nodes indexed (x,y,z) coordinates
inside job partition

11

Partition Mapping

Can physically map processes to processors
— Create mapping file

— More info to follow

Also - control how processes are filled

— BGLMPI_MAPPING=TXYZ
* In VN, fill both procs first, then nodes

— BGLMPI_MAPPING=XYZT

 Default - fill nodes then procs

Profiling

Visualizers

— Efforts for jumpshot and paraver
Simpler Characteristics

— FPMPI

— FPMPI-like from IBM

Compiler provides access to routine wrapping

- "-finstrument-functions”
- __cyg_profile_func_enter(void * this_function, void * call_site)
- __cyg_profile_func_exit(void * this_function, void * call_site)

12

Debugging

« Gdb
— Work in progress, trying to get it
— Connect to hung processes

» Totalview
— Ported, but, unlikely to come here

Aspects of single processor
optimization on BG/L

Andrew Siegel

13

General CPU info

Two processors per node
— No support for SIMD between processors

— Very unsafe dual-proc programming model
(co_start(...)) that is not recommended for apps
programmers

— Virtual node or co-processor mode recommended
32-bit architecture at 700MHz

Single integer unit

Single load/store unit

Special double fpu (double hummer)

General, cont.

L1 data cache: 32Kb, 32-Byte line size

L2 data cache: Prefetch buffer: 16 128-byte lines

L3 data cache: 4Mb, 35 cycle latency

Memory: 512Mb DDR at 350MHz, ~85 cycles latency
Double FPU: 32 primary (P) and 32 secondary (S) fp

registers -- major key to single CPU performance:

— Standard PowerPC instructions on fpuO (fadd, fmadd,
fadds, fdiv)

— Typical SIMD instructions for 64-bit floating point (fpadd,
fpmadd, ...)forP and S

— Also SIMOMD: cross, asymmetric, and complex operations

— Quad-word load/store (pair of 64-bit fp’s one to each group
of registers)

14

SIMOMD FMA Instructions

class

EMA instruction

Example

Operation

C99 builtins

Parallel

fxmadd fT, fA,fC,fB

Pr = Py*Pc+Pg
St =S*Sc+Sy

T=_fpmadd(B,C.A)

Cross

fxmadd fT,fA,fC,fB

Pr=Py*Sc+Pg
St = Sy*Pc+Sg

T=_fxmadd(B,C,A)

Replicated

fxcpmadd fT,fA,fC,fB

Py = Pp*Po+Pg
Sr=Pa*Sc+Sg

T=_fxcpmadd(B,C,a,
)

Asymmetric

fxcpnpma fT,fA,fC,fB

Pr=-Pp*Pe+Py
St = Py*Sc+Sg

T=_fxcpnpma(B,C,a,
)

Complex

fxcxnpma fT,fA,fC,fB

Pr=-Sa*Sc+Pg
St = Sp*Pc+Sg

T=_fxcxpnpma(B,C,a
)
S.

Instruction throughput

Instruction (Lcayt—cezlne(:; ;hrouthut/cvcl
fadd 5 1
fmadd 5 1
fpmadd 5 1
fpdiv 30 1/30

Theoretical limit: 1fpmadd/cycle =4 FLOPs/cylcle = 2.8 GFLOPs

15

Random notes

Warning: no hardware sqrt function
— GNU implementation ~100 cycles
— Others up to 5x faster
— Other math libs still not fully optimized

Efficient use of double-hummer requires 16-byte
alignment for quad-word load/store instructions

Ifpd/stfpd can double the bandwidth to L1-cache

Data alignment

Compiler will align data greater than 16 bytes to 16-byte
boundaries for stack locals and externally defined data. Special
16-byte-aligned malloc now also available.

Parallel load/store is suppressed unless it can be determined
by examination of alignment information on memory references
that instruction will not trap

Often, it is not possible for compiler to tell if a pointer point to
aligned data. (this is currently being improved)

User can assert so using:
— _alignx(16, f); C
— call alignx(16, (1)) Fortran

16

Data alignment sample code

Fortran :

call alignx(16,x(1))

call alignx(16,y(1))
libm* unroll(10)

doi=1,n

y(@) = a*x(i) + y(i)

end do
C:
double * x, * y;
#pragma disjoint (*x, *y)
_ alignx(16,x);
_ alignx(16,y);
#pragma unroll(10)
for (i=0; i<n; i++) y[i] = a*x[i] + y[il;
Try : -O3 -qarch=440d -qlist —qsource

Compiler Use

» Optimization levels:
— Default optimization = none (very slow)
— -0 : good place to start, use with -gmaxmem=64000
— -02: same as -O
— -O3 -gstrict : less aggressive, must strictly obey program semantics

— -03: aggressive, allows re-association, will replace division by
multiplication with the inverse

— -ghot : turns on high-order transformation module, will add vector
routines, unless -ghot=novector

— check listing: -greport=hotlist
— -gipa : inter-procedure analysis; many suboptions such as: -
gipa=level=2
* Architecture flags:
— -garch=440 : generates standard powerpc floating-point code
— -garch=440d : will try to generate double FPU code

17

Compiler, cont.

Recommendation:

— On BGI/L start with : -g -0 -garch=440 -gmaxmem=64000
— Try : -03 -qarch=440/440d

— Try : -05 -qarch=440d

— -0O4 = -03 -ghot -gipa=level=1 -qarch=auto

— -0O5 = -03 -ghot —qgipa=level=2 -qarch=auto

Warning: Generated .s files not valid! Must use —qreport
-gsource to get assembler listing and double hummer info!

There are several compiler components. The backend code generator
has some vectorization capability, in fact it is very good in certain
cases.

You would get that with -O3 -garch=440d. The -qtune=440 option is
set by default in the compiler config file, so you don't need it unless
you use -O4 or -O5. The higher optimization levels are:

-O4 = -03 -ghot -qgipa -qarch=auto -gtune=auto
-0O5 = -03 -ghot -gipa=level=2 -garch=auto -qtune=auto

The -ghot option invokes a different compiler module with more
vectorization capability.

Lore to date: often get better results from -O3 -garch=440d, but the -
ghot capability should improve over time, and it can do transformations
that the backend peice simply can't handle.

18

Profiling

BGI/L is similar to most risc systems, so profiling has been done to this point on
another platform.

Standard profiling (prof, gprof) is not yet available on BG/L so use IBM Power4
systems for profiling.

Major differences between BG/L and IBM Power4:
— BGI/L has minimal L2 => BG/L benefits more from L1 cache re-use
— BGI/L does not have a hardware square root
— Mathematical intrinsic routines (exp, log, ...) on BG/L are from GNU libm.a =>

Good approach: profile on IBM Power4 / AIX using xprofiler

Use MPI profiling tools — there are many to choose from.
— mpi_trace : low overhead, text summary for free (see demo later)
— paraver : extensive data analysis capabilities
— mpe / jumpshot : standard with MPICH

Math Routines

aféasf aRf(l)?J tiVneeCStOF op | libm |libmass | libmassv
Approximate cycle- exp 185 64 22
ggugg/fer evaluation log 320 80 o5

pow | 460 | 176 | 29-48

sqrt | 106 46 8-10

rsprt | 136 6-7

1/x 30 . 4-5

19

Floating Point Counters:

- 2 counters per core

* Can count 1 set of load/store and 1 set of
arithmetic ops concurrently.

* Load / Store Sets:

—One of {Double LD, Double ST, Quad LD, Quad ST}
* Arith Op Sets:

— One of {Adds, Mults, FMA, All Quad Arithmetic Ops}
* Need multiple runs to get all possible sets.

Bgl perfctr

» API abstraction of the hardware performance
counter

» 64bit virtualization of 32b counters
+ Overflow protection using timer interrupts
* Mnemonic names for all events

» Unified view of all events without limitations
of functionality

« Transparent event to counter mapping

20

PAPI

De Facto standard API for user level tools
and application developers

BG/L implements PAPI v. 2.3.4
Full support for create, remove, start, stop,
reset event sets

All BG/L counters are supported in PAPI

using the native event format
(bgl_event mnemonic & O0x3FF) | (bgl_edge)<<10

New PAPI events

PAPI_BGL_OED
Oedipus instructions in FPU unit

PAPI_BGL TS 32B
Total number of 32B chunks sent in any torus direction

PAPI_BGL TR _DPKT
Total number of tree data packets sent on any channel

PAPI_ BGL TS FULL, PAPI_ BGL_TR_FULL
Cycle counts indicative of pile-up

21

Optional PAPI functionality

* PAPI can support some functions that is
available on some computing platforms.

« On platforms where the functionality is not
available these API calls return an error code
« On BGI/L this includes the following

— PAPI_overflow(): To call a user handler on
counter reaching a threshold value

— PAPI_multiplex(): Automatic, periodic switching
between event sets. Use different counter set
up on different nodes instead.

22

